Jump to content

Recommended Posts

Posted
10 minutes ago, Royale with Cheese said:

This is an example of why people don't actually believe you're a "genius".  Talk about an example of trying too hard.


Proven wrong... runs and hides behind "trying too hard".

 

I wish it wasn't so transparent. 


I've also never professed to be a genius. If basic mathematical models feel "genius" level to you, that's a whole new can of worms that we don't have time to unwrap.

Posted
8 minutes ago, Einstein said:


Proven wrong... runs and hides behind "trying too hard".

 

I wish it wasn't so transparent. 


I've also never professed to be a genius. If basic mathematical models feel "genius" level to you, that's a whole new can of worms that we don't have time to unwrap.

 

Proven wrong....runs behind "those who are correct are often in the minority".  See I can do it too.

 

Do you know what an example of trying to hard is?  Posting your tax returns on a football message board.  That is the ultimate desperation move.

 

Posted
1 hour ago, Einstein said:

 

Suppose it depends on your definition of “often”. If often is “sometimes”, then yes. 
 

But logically, for the majority to be right, they must have a large number of people with the right opinion within it. And by virtue of it being the majority, this means that most people are intelligent enough to be on the “right” side. I think I can even model this mathematically…

 

Let X be a variable representing correctness (or in my opinion, being on the “Allen played well” side of the equation). Well, X follows a normal distribution with mean μ and variance σ^2. The probability density of X would be f(x) = (1 / (σ * sqrt(2π))) * exp(-(x - μ)^2 / (2σ^2)). To find the probability that an opinion falls within a majority range defined as [μ - kσ, μ + kσ], we can calculate P(μ - kσ ≤ X ≤ μ + kσ) = integral from (μ - kσ) to (μ + kσ) of f(x) dx. We can also define C(x) as inversely related to the density function, meaning C(x) is proportional to 1 / f(x).

 

Long story short, the probability that the majority would be wrong can be approximated (with my model anyway) by Rate of error = 1 - integral from (μ - kσ) to (μ + kσ) of (1 / f(x)) dx.

 

This model would imply that majority skews toward the wrong side of the correctness scale. The problem is that the inverse relation of C(x) is problematic and there are assumptions here. But I think you get where i’m coming from anyway.

 

 

Opinions with discrete outcomes like "played poorly" or "played well" fall into normal distributions??? Tell me more...

 

How many standard deviations from the mean is "played well"?

 

 

Posted

I don't think these WRs are savvy enough to cut off routes and find soft areas in the coverage.   Or maybe its just not an aspect of Brady's offense. They all seemed to just continue their routes even when blanketed.  I saw a number of times they could either cut off a route, or identify a coverage to get into better situations.

  • Like (+1) 1
Posted (edited)
26 minutes ago, Jauronimo said:

Opinions with discrete outcomes like "played poorly" or "played well" fall into normal distributions??? Tell me more...

 

How many standard deviations from the mean is "played well"?

 

Sorry for the confusion. I’m using normal bell-curve distribution as a model to represent the distribution of people’s beliefs or judgments about correctness. Aka, not on whether a player played well. μ represents the average opinion or belief about a topic (like Allen’s performance), while the standard deviation (σ) measures how spread out those opinions are. This doesn’t find how many standard deviations from the mean a player is. It shows how the majority’s opinion might cluster around an average belief, regardless of its correctness. Thus, probability of being correct in a majority.

 

Now, as you may be wisely picking up on, and as I mentioned in the original post when I posted the model, one of the problem with it is the assumption of correctness being inversely related to the density of the distribution. It’s a good starting point though, if you’d like to improve on it.

 

 

Edited by Einstein
  • Eyeroll 1
Posted
1 minute ago, Einstein said:

 

Except you didn’t actually prove anything. You didn’t provide a model. Or a study. Or a logical rationale. You just said words with nothing backing them up.

 

I expect this from some others on the website but genuinely thought it was beneath you. And now you’re reeling to such a point that you’re bringing up a post from 3 years ago to try to denigrate me. This is sad. 


Because there isn't a mathematical model to prove this subjective topic lol and you didn't prove anything either.  

When someone goes to that level of trying to hard, it sticks lol.  

 

  • Like (+1) 1
Posted (edited)
15 minutes ago, Royale with Cheese said:


Because there isn't a mathematical model to prove this subjective topic lol and you didn't prove anything either.  

When someone goes to that level of trying to hard, it sticks lol.  

 

 

You and I were having a cordial conversation about correctness. As a rule. Not on one topic, but in general. In fact, you specifically mentioned that there are many times when being in the majority means you are on the correct side. By definition, that means that you were including other situations about non-subjective topics - otherwise, how could you have decided that being in the majority side was right? I then took our conversation and made a quick model of it. Based on *your* guidelines in the conversation.

 

You then had some sort of trouble with my reply, so you started insulting me, stating I was trying too hard, bringing up posts from years ago, and claiming that I think i’m a genius after posting basic calculus(!?!?). Certainly caught me off guard, because I thought we were just having a nice conversation. And that leads to here and now.

 

You could have just apologized for acting as you did, but instead you chose to dig your heels in. Which I suspect you will continue to do.

Edited by Einstein
Posted
10 minutes ago, ImpactCorey said:

There's a good conversation going on here.  I love the discussion of data and applying it to the topic.  I made this handy chart with the data I collected.Screenshot2024-10-08at4_23_39PM.thumb.png.69ecf61696e9dd455904fd499316fad4.png

 

In this particular thread, you’re right. I apologize. I’ll bow out and allow the thread to get back on topic.

  • Like (+1) 1
Posted
5 minutes ago, Einstein said:

 

You and I were having a cordial conversation about correctness. As a rule. Not on one topic, but in general. In fact, you specifically mentioned that there are many times when being in the majority means you are on the correct side. By definition, that means that you were including other situations about non-subjective topics - otherwise, how could you have decided that being in the majority side was right? I then took our conversation and made a quick model of it. Based on *your* guidelines in the conversation.

 

You then had some sort of trouble with my reply, so you started insulting me, stating I was trying too hard, bringing up posts from years ago, and claiming that I think i’m a genius after posting basic calculus(!?!?). Certainly caught me off guard, because I thought we were just having a nice conversation. And that leads to here and now.

 

You could have just apologized for acting as you did, but instead you chose to dig your heels in. Which I suspect you will continue to do.

 

Just be normal.  If you don't agree, then disagree like a normal person.  There is no reason to bring calculus into this lol.  Come on.

Dude, you have insulted on this board before.  Stop this.  

  • Like (+1) 1
Posted
2 hours ago, MJS said:

That's all speculation. It's not like Allen hasn't played bad before. He doesn't have a concussion every time he plays badly.

 

You mean like when he played badly in the second half and after the Green Bay game last year, suddenly and inexplicably? 

  • Like (+1) 1
Posted
47 minutes ago, Einstein said:

 

Sorry for the confusion. I’m using normal bell-curve distribution as a model to represent the distribution of people’s beliefs or judgments about correctness. Aka, not on whether a player played well. μ represents the average opinion or belief about a topic (like Allen’s performance), while the standard deviation (σ) measures how spread out those opinions are. This doesn’t find how many standard deviations from the mean a player is. It shows how the majority’s opinion might cluster around an average belief, regardless of its correctness. Thus, probability of being correct in a majority.

 

Now, as you may be wisely picking up on, and as I mentioned in the original post when I posted the model, one of the problem with it is the assumption of correctness being inversely related to the density of the distribution. It’s a good starting point though, if you’d like to improve on it.

 

 

 

Is this why with the power of the masses approach (or whatever it's called when you have a jar of jelly beans and ask people to guess and then average the amount and you tend to get the best answer)...is what you're saying why you use average instead of median?

Posted

Erik didn't say Brady "doesn't have the scheme to beat the defensive tendencies emerging." That's way more definitive than what he said., It implies he will never be able to handle it with his scheme, and that's way more than Erik ever said or appeared to mean.

 

He did say that Brady will have to do a better job scheming to beat those coverages, and that appears to be very correct to me.

 

Unless the Bills can learn to handle this variation they're getting, it will be a long season. I'm all but sure they'll scheme better and handle these variations better. But how much better?

 

Most of this group hasn't played together or with Brady before. It'll take time to smooth the rough edges, without question. Even with the edges smoothed, will they be good enough to be legitimate contenders. That's the concern.

  • Like (+1) 1
Posted
5 hours ago, ImpactCorey said:

I don't think these WRs are savvy enough to cut off routes and find soft areas in the coverage.   Or maybe its just not an aspect of Brady's offense. They all seemed to just continue their routes even when blanketed.  I saw a number of times they could either cut off a route, or identify a coverage to get into better situations.

That definitely seems like an issue…SOME of these missed throws seem like josh is throwing to the spot he’s expecting them to route adjust to and they haven’t really been doing it.  That could be somewhat correctable I think but we’ll see 

Posted
On 10/8/2024 at 9:47 AM, BuffaloBill said:

A combination of factors at play:

 

1) Mostly lack of production & execution  from key skill players

2) Bills inability to threaten down the field

3) Brady does not have the scheme to beat the defensive tendencies emerging 

4) Offensive line was not good

 

These are not simply opinions - the film shows the issues.

 

 

 

I didn't watch this video right away because I was afraid it would be depressing.

 

Just watched it now.  I was right.

 

Bottom line:  the players and coaches all sucked that game.  

Posted

From what i'm seeing, put Coleman in the slot where we can utilize his size for some easy yards. He will never be a great perimeter threat and for Brady to keep him on the outside is like fitting a square peg in a round hole.

Sure, it worked for Coleman at FSU, but NFL CB/DB's are faster and somewhat bigger and can jam the big man at the line, throwing off rhythm and timing and thus only a couple of passes his way each game, with very little success.

 

Coleman in the slot.......i'm advocating this and i'll die on this hill.

  • Awesome! (+1) 1

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Restore formatting

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
×
×
  • Create New...